

Introduction (2)

- <u>Human region segmentation</u> is very important for a lot of applications.
 - Superimposing onto a synthetic image
 - Weather forecast
 - Image communication
 - face to face communication
 - protecting personal privacy
 - Recognizing facial expressions
 - Detecting an intruder

Introduction (3)

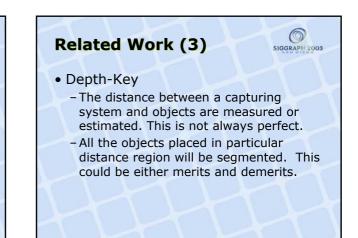
• The goal of this project is human region segmentation from video in real time.

SIGGRAPH 2003

- We don't want to set up a special environment.
- We don't want to restrict the person to be segmented in a particular position.

Introduction (4)

SIGGRAPH 2003


- These availability and interactivity will enhance the applicability of the human region segmentation.
 - Entertainment
 - Virtual reality and augmented reality
 - Outdoor applications
 - Presentation

Related Work (1) • Chroma-Key (including Ultimatte) • A blue (or green) screen is utilized as a well-controlled background including sophisticated lighting condition. This is a strong restriction of this method. • As you know, it is widely used especially in broad casting. • It is well designed for human skin color (or blue eyes).

Related Work (2)

- Background Subtraction
 - The color values of pixels are compared between the current image and the previously-captured background image.
 - Such objects those have the same color as the background cannot be segmented.

Related Works (4)

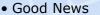
Comparison of related works

SIGGRAPH 2003

SIGGRAPH 2003

Method	Category	Restriction	Target
Chroma-Key (Ultimatte)	Active (lighting)	Blue screens	Mainly human
Background Subtraction	Passive	Different color	Any objects
Depth-Key	Active is better	Standing position	Any objects
Our Proposal			

Our Proposal (1)

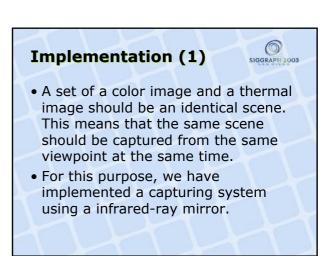

Assumption

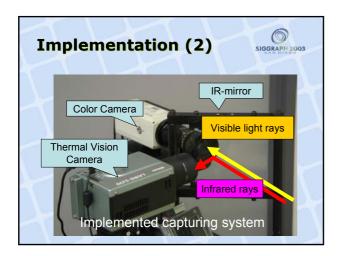
- The human body has higher temperature than the surroundings.
 - Warm objects will be segmented independent of colors and distance.
 - Warm environments and cold clothes would be bad for our assumption. For this problem, we could implement a kind of hybrid method that utilizes thermal and color information.

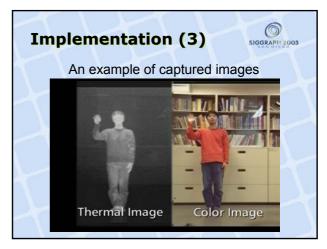
SIGGRAPH 2003

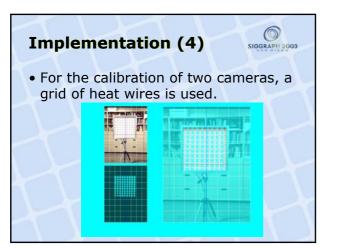
SIGGRAPH 2003

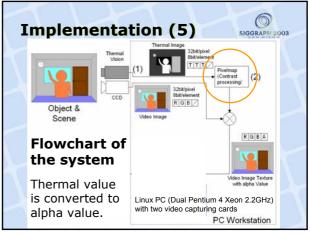
Our Proposal (2)

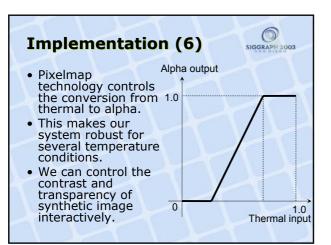

- By capturing infrared rays, we can measure the temperature distribution in a scene.
- This is a passive method, and could be robust in comparison with the depth measurement used in the depth-keying.
- Thermal vision camera is already commercially available from \$10,000, and widely used for medical purposes. Ours is about \$40,000.

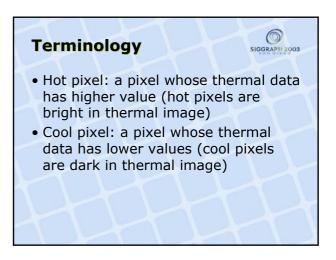

Our Proposal (3)

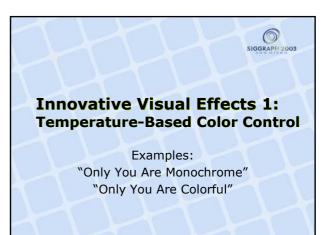

<u>Thermo-Key</u>


- A thermal vision camera is used for capturing the temperature distribution.
- Thermal data is the key for segmenting human region from a color image.
- This method can be specialized for human region, since we know the approximate temperature of human body.


Our Proposal (4)						
Method	Category	Restriction	Target			
Chroma-Key (Ultimatte)	Active (lighting)	Blue screens	Mainly human			
Background Subtraction	Passive	Static Background	Any objects			
Depth-Key	Active is better	Standing position	Any objects			
Thermo-Key	Passive	The person must be alive.	Mainly human			

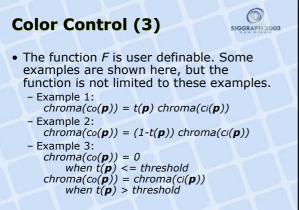


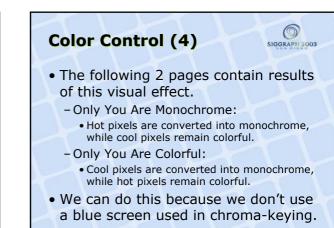


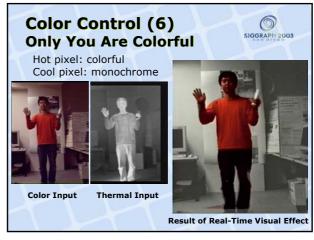


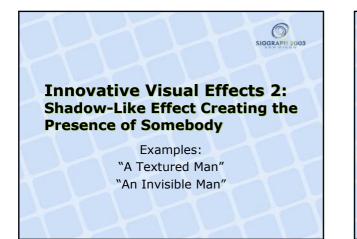
Innovative Visual Effects

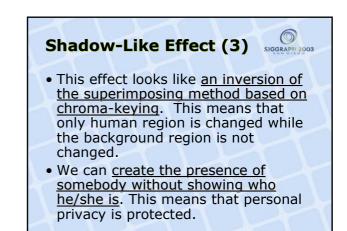
- The following 7 visual effects are proposed and implemented here.
 - Temperature-Based Color Control
 - Shadow-Like Effect Creating the Presence of Somebody
 - Interaction Using Cold Objects
 - Interaction Using Warm Objects
 - Opaque for Visible Rays while Transparent for Infrared Rays
 - Superimposing on the Same Scene
 - Taking a Set of Your Snapshots

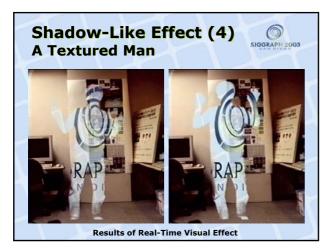



Color Control (1)


- This method modulates, converts or controls color values of pixels according to the corresponding thermal data.
- Input data:
 - a color video sequence, and
 - a thermal video sequence corresponding to the color video.


Color Control (2) • Algorithm: We define a function F, $c_0(p) = F(ci(p), t(p))$ where $-c_0(p)$: output color value of pixel p -ci(p): input tolor value of pixel p -t(p): input thermal value of pixel p; we consider the case where $0 \le t(p) \le 1$.


- This method blends or superimposes an image onto a color video input according to the corresponding thermal input.
- Input data:
 - a color video sequence,
 - a thermal video sequence corresponding to the color video, and
 - an image to be superimposed.


Shadow-Like Effect (2)

Algorithm: co(p) = img(p) when t(p) > threshold (human region) co(p) = ci(p) when t(p) <= threshold (background) where - co(p): output color value of pixel p - ci(p): input color value of pixel p - t(p): input thermal value of pixel p

SIGGRAPH 2003

 - img(p):color value of pixel p on the image to be superimposed

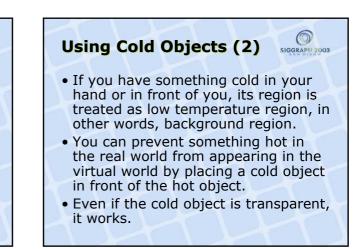
Shadow-Like Effect (5)

• Consider the case where the image *img*(**p**) is a picture of the scene captured before the human enters the scene. In the synthesized image, <u>the human looks like an invisible man</u> because of the following condition.

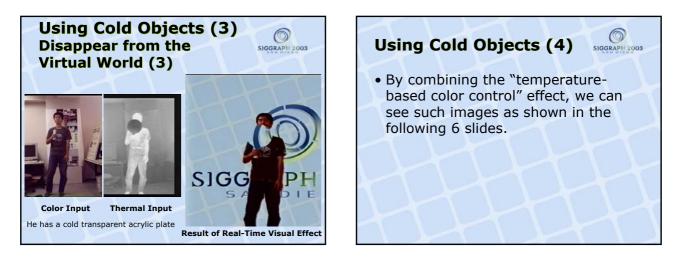
SIGGRAPH 2003

background region: current scenehuman region: previously captured scene

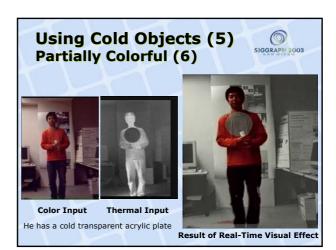
 By combining the "temperature-based color control" effect, we can see such images as shown in the next slide.


Results of Real-Time Visual Effect

Using Cold Objects (1)


Algorithm: co(p) = ci(p) when t(p) > threshold (human) co(p) = img(p) when t(p) <= threshold (background) where - co(p): output color value of pixel p - ci(p): input color value of pixel p - t(p): input thermal value of pixel p - img(p):color value of pixel p on the background image (the virtual world)

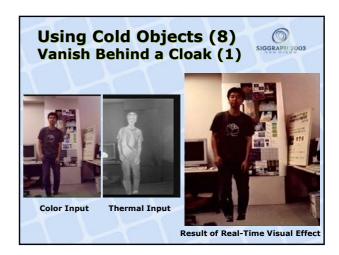
SIGGRAPH 2003



Result of Real-Time Visual Effect

Using Cold Objects (6)

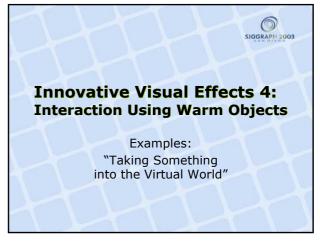
- Consider the case where the image *img*(**p**) is a picture of the scene captured before the human enters the scene. We have the following condition.
 - background: previously captured scene
 - human region: current scene
- By placing a cold object in front of you, you can be partially invisible. This means that the previously captured scene appears in a part of your body region.



Using Cold Objects (7)

- This is not limited to a transparent acrylic plate.
- If you use a transparent cold cloak, you can vanish from the synthesized image by placing the cloak in front of you.

Result of Real-Time Visual Effect


Using Warm Objects (1) SIGGRAPH 2003

 If you have something hot in your hand, its region is treated as a high temperature region, in other words, human region to

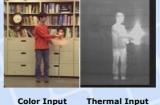
 You can take something cold in the real world into the virtual world by placing a hot transparent object in front of the cold

• This could be regarded as a special lens

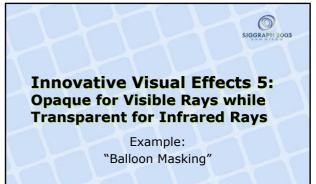
that transfer the real world to the virtual.

be segmented.

object.


Result of Real-Time Visual Effect

Using Warm Objects (2) Taking Something into the Virtual World (5)


Fire is also useful for this purpose

Result of Real-Time Visual Effect

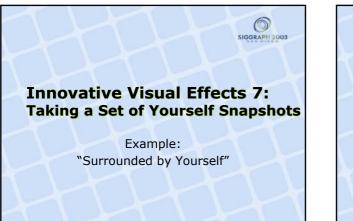
Result of Real-Time Visual Effect

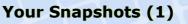
Opaque for Visible, Transparent for Infrared (1)

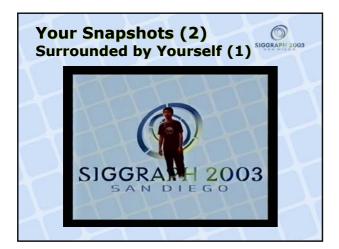
- An acrylic plate used in the previous section is transparent for visible rays, but opaque for infrared rays.
- A balloon is very different from the acrylic plate. Its characteristic is as follows:
 - Opaque for visible rays
 - Transparent for infrared rays.
- We will have a balloon-colored humanshaped region as shown in the following 4 slides.

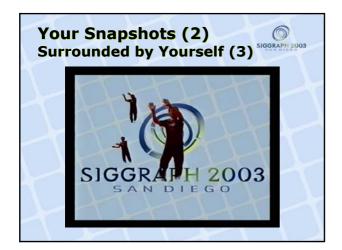
Result of Real-Time Visual Effect

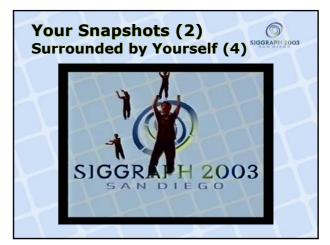
Superimposing on the Same Scene (1)




- You can superimpose your segmented image onto the same scene.
- By controlling the size and position of your segmented image, you can fight with yourself.







- This is not limited to Thermo-key, but available for Chroma-key.
- The segmented region can be regarded as your snapshot. By placing such snapshots on an image, you will have a lot of yourself.



Future Work

- Hybrid approaches that utilize color data to overcome the demerits of thermal data
- More compact capturing system
- More applications that cannot be realized by other approaches

